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The study is concerned with the dynamic properties of an

explosion in a medium consisting of condensed phase fuel particles

dispersed in a gaseous oxidizer. The influence of the parameters

which characterize the problem is determined from numerical solu-

tions of a simplified analytical model and the effect of transport

phenomena on equilibrium gas-particle dynamics is examined.

The history of the process is analyzed assuming that the

flow field is one-dimensional in space. While the most realistic

approach is adopted for the thermodynamic description of the

medium, all other effects are simplified to the most elementary

form in order to establish a fundamental point of departure for

the assessment of their possible influence. The flow field is

considered to consist of a simple wave where the oxidizer gas

carrier is compressed, and of a reaction zone where the substance

acquires the state of thermodynamic equilibrium. At first two

extremes of particle motion in the compression wave are taken

into account: (I) when they are assumed to be stationary at all

times; (II) when they are supposed to follow the gas motion iden-

tically. Then the effects of a more realistic particle motion

are investigated. The solutions, obtained by the use of an

IBM 7090 computer, refer to the properties of a hydrazine spray

in oxygen initially at NTP, and use the initial loading factor

(ratio of particle to gas concentrations) and the relative com-

bustion front velocity as the major parameters of the problem.



ii

Both the transient process and the final steady state are de-

termined for a wide range of these parameters.
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NOMENCLATURE

Dimensional

6t- velocity of sound

- particle diameter

C_- pressure specificconstant heat

C_.- constant volume specific heat

e- internal energy per unit mass (including internal

energy o£ formation)

h- enthalpy per unit mass (including enthalpy of formation)

- Gibbs free energy per unit mass (including energy of

formation)

- constant describing the rate of decrease of the surface

area o£ the reacting fuel particles

O

rn - time rate of change of mass per unit cross-section area

- molar mass

n - particle number density

_D. pressure

- particle radius

r - mean particle radius

- universal gas constant

S - relative velocity of the reaction front

- time

t.o.. ro /K

T" temperature

ti. mass velocity

V - specific volume

uJ- absolute reaction front velocity
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X- space coordinate of reaction front

- concentration

- viscosity

- particle trajectory in 1_-X space

- density

Subscripts

e_- equilibrium

- rue 1

_W- frozen

- gas

_o- initial gas properties

_r" gas properties in the reaction zone

_X - gas properties immediately ahead of the reaction front

nq - mixture

mo- initial mixture properties

0- initial conditions

- particle

_o- initial particle properties

_r- particle properties in the reaction zone

_gX- particle properties immediately ahead of the reaction

front

- reaction zone properties

X - properties immediately ahead of the reaction front

- steady state or entropy

_5 - transient quantity defined by Eq. (2-76)

V - vapor



• X

Superscripts

9(-- Properties at the initial pressure

Non-dimensional

A;B;- coefficients defined by Eqs.
1

(2-45)

C D- drag coefficient

D: _sll',o
E =e/(_,,h<>

_,_ - coefficients defined by Eqs. {2-48)

Hv = (hv - h<)/(,ITl_,,)

,_/: h/_,.),.o
: _o/_.

'R : _/_o
]_e" Reynolds number

17= _/_L_o

V = rivalÜ

-_= _/v_o
w: wl<_o
X: x/('%o_o_
Y: (_+<..,,b<<,.,,,a)/(_<,,<;<i;-,-_<,;)

- moles per mole of gas plus vapor

_- specific heat ratio of gas component
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S - condensed component constant pressure specific heat

divided by that of the gaseous component

_l°_r+;ds+ _

_ _o_see_S cor_poqent

8" T/"F_

volumetric fraction

gl(%oeo)
(3_- ratio of molecular weights

- non-dimensional time lag

? - fraction of particle mass still existing at time

of that which entered the reaction zone at time

fined by Eq. (2-27)

_)_,¢3" source terms defined by Eqs. (2-46)

?- coefficient defined by Eq. (2-79)



1. INTRODUCTION

The study is concerned with the generation of pressure

waves by the combustion of a heterogeneous medium consisting

of fuel in the form of condensed phase particles dispersed in

a gaseous oxidizer. The process under study is illustrated in

Fig. l-l, which represents, on the left, a self-light streak

photograph of the development of an explosion of a kerosine

spray in oxygen, ignited by a glow plug in a 2 inch square cross-

section tube. While the acceleration of the combustion front

is quite evident in such a record, the flow field ahead of it

is not visible, although the existence of pressure waves is

apparent from the wavy traces of particles within the expanding

combustion zone.

The analysis deals with the initial stage of the process.

Its extent in the time-space domain of Fig. 1-1 is restricted

to the regime delineated there by the broken line, indicating

that the scope of study is in essence limited to the interval

when the process is not yet affected by any wave interaction

phenomena. The flow field under consideration is represented

by the wave diagram on the right side of Fig. i-i, demonstrating

the characteristics of the compression wave ahead of the flame,

as well as those in the reaction zone. The gas motion is repre-

sented by broken lines, while a particle trajectory is displayed

by a dotted line.



The purpose of this work is to lay down the fundamental

background for a systematic study of the flow field of Fig. 1-1.

In the development of the theory, care has been taken to intro-

duce all basic concepts in a general form so that a more accurate

description of the problem could be accommodated later.

In order to assess the relative importance of the variety

of physical effects that can be caken under consideration, it

appeared most reasonable to take into account at first the most

realistic description of the thermodynamic properties of the

medium, and simplify all other effects to the most elementary

form, permitting the establishment of bounds for the extent of

their possible influence. In this connection, the treatment of

the problem has been simplified by the introduction of the fol-

lowing idealizations:

I. The medium consists of fuel particles in a condensed

phase, and of a gaseous oxidizer in which they are uniformly

dispersed. The size of the particles is assumed expressible

in terms of a single, representative radius, while their number

is virtually invariant, and the volumetric fraction they occupy

is negligible.

2. The flow field is comprised of a simple wave, where

the oxidizer gas carrier is compressed while the change in phase

or state of fuel particles is negligible, and of a reaction zone

varying with time, where the product gas is at a spatially uni-

form state while the particles acquire a distribution in size

depending on the time of their arrival in this zone. As illus-

trated by the somewhat idealized wave diagram of Fig. i-I, one



of the consequences of this idealization is the substitution

of a set of horizontal lines for the system of characteristics

in the reaction zone. The approximation resulting from this

simplification, as demonstrated on this diagram, ought to be

quite good.

5. Two extremes of particle motion in the compression

wave are considered:

Case (I) where they are assumed at rest, and

Case (II) where they are supposed to follow the gas

motion identically.

4. In the compression wave the gaseous substance is assumed

to behave as a perfect gas with constant specific heats, while

in the reaction zone its thermodynamic properties are determined

from equilibrium composition analysis that takes into account

the distribution of fuel particles, as pointed out in Ideali-

zation 2.

5. While algebraically the problem is formulated in such

manner that any law for the reaction rate, as well as for the

relative speed of the combustion front, could be accommodated,

the numerical solutions are obtained for the commonly accepted

rule of a constant rate of decrease in the surface area of fuel

particles (whose validity has been established experimentally

only for the case of a single droplet burning in a stagnant

atmosphere) and a constant, relative velocity of the front

relative to the gas phase which has been adopted as one of the

major parameters for the study.



6. For numerical solutions the combustion front is consid-

ered to act solely as an interface between the reaction zone and

the unreacted medium without exhibiting any change in pressure,

and all extraneous effects, pertinent in particular to liquid

sprays, such as particle size and concentration profiles, vapor-

ization and shattering (in compliance with Idealization 1),

turbulence, transverse motion, boundary layer, and heat transfer

phenomena, are neglected.

After examining the relative importance of the various

parameters of the problem by the above method, the influence of

particle motion on the development of the flow field is investi-

gated. This is accomplished by assigning a realistic acceler-

ation force to the particles ahead of the reaction front while

retaining the simple wave form for the gas flow field.

Finally, the influence that heat and mass transfer between

phases may exert on the gas wave dynamic processes is studied.

The results of this study serve to estimate the importance of

transport phenomena in the unreacted region on the prominent

wave processes in a two-phase system.

Relationship to Current Literature

As a result of its profound influence upon the performance

analysis of rocket engines under both steady and unsteady oper-

ating conditions, the fluid dynamics of gases containing sus-

pensions of small particles has become recently a subject of

intensive study. The physical relations governing the motion

of a gas containing non-interacting solid particles have been
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formalized by Marble [i] who, besides uniform flow conditions,

examined also the boundary layer flow and the Prandtl-Meyer

expansion. The relaxation phenomena behind shock and rare-

faction waves propagating through a particle-laden gas have

been studied by Soo [2], Kriebel [5], and Rudinger [4, 5], while

the one-dimensional expansion of gas particle systems was ana-

lyzed by Soo [2] and Kliegel [6]. Rudinger [7] also investigated

the effects of finite particle volume on particle-gas dynamics

and hence determined the range of validity for the commonly

accepted assumption that the particle volume is negligible.

Williams [8, 9] considered more specifically gas-liquid droplet

systems, inquiring into the characteristic features of spray

deflagration, as well as the structure of two-phase detonation

waves. A comprehensive exposition of two-phase combustion theory,

as well as a thorough review of the literature, is given by

Williams [10] in his text on combustion.

With the aim of contributing toward a better understanding

of combustion instability phenomena in liquid propellant rocket

engines, the group at Princeton under the direction of Crocco

has carried out a comprehensive program of study on the subject

with a particular consideration of acoustic phenomena [ii, 12,

13, 14], as well as non-linear wave interactions [15] and the

influence of acoustic oscillations in the ambient gas on single

droplet burning [16]. Agosta's group, meanwhile, investigated

the propagation of pressure waves in chemically reactive two-

phase mixtures [17] and the effect of various droplet phenomena

on heterogeneous combustion [18]. All these studies, however,

have been concerned primarily with the determination of conditions
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which would contribute toward the amplification of an input

pressure disturbance without inquiring into the mechanism of

its initial growth.

The initial build-up of a pressure pulse in gaseous com-

bustion is now quite well understood [19, 20, 21]. The corre-

sponding process in a heterogeneous medium has been taken for

granted by most of the investigators although its proper under-

standing and control may yield one of the most effective means

of suppressing the tendency toward unstable operation of a com-

bustion chamber.



2. GENERATION OF PRESSURE WAVES

2-1. Analysis

2-1•l• State Parameters

The state of the substance is described in terms of pres-

sure, temperature, and composition as independent parameters•

All other thermodynamic functions are then evaluated by the use

of fundamental thermodynamic identities for equilibrium compo-

sition on the basis of known properties of each constituent.

The composition is described in terms of volumetric fractions.

"_, , and concentrations, _Z (in units of mass per unit of space)

The particles are described, according to Idealization i,

by means of a representative radius, so that the volumetric

fraction they occupy is given by

where

and

_7o = -_-rf- r n

P --_ (r)Jr
O

is the particle number density.

Their concentration is then:

(2-i)

(2-2)
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A corresponding expression can be written for the gaseous phase.

The initial loading factor of the mixture is, under such

circumstances,

[<d-e,.,-/:;,:les\ (2-3)

where subscript " o" denotes the initial state.

The composition of the gas in the reaction zone is de-

scribed in terms of the mass ratio

= _ it_ei b_rned

- _ oxidl/_er _s (2-4)

whence its rate of change

At the same time in terms of the average concentration of the

gas in the reaction zone, _ ,

(2-6)

The front travels at a relative velocity

to the oxidizer gas and since the gas is admitted to the re-

action zone only by the action of the front of this zone when

the local gas concentration is _]_,

) :

with respect

(2-7)
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while, as is readily recognized,

where _h_ is the rate of gas generation due to the combustion of

fuel per unit area.

With Eqs. (2-4), (2-6), (2-7), and (2-8), Eq.

• - s

(2-5) becomes

(2-9)

2-1.2. Fundamental Relations

The variation with time of the state in the reaction zone

is prescribed by means of a series of conservation equations.

The equations for the conservation of mass and energy are pre-

sented for the mixture, the gas, and the particles in this

region to illustrate the consistency of the development although

they will not all be used in the analysis. The energy relations

take into account the energy expended by the compression process

of the pressure wave whose action forms the central subject of

the analysis. The source terms in the principal conservation

equations depend on the gas generation rate which in turn is de-

termined from the particle continuity equation that is subject

to a given expression for the rate of particle consumption by

the reaction process.

The continuit Z equation for the mixture in the reaction zone

states that the mass per unit cross-sectional area increases at

a rate equal to the sum of the oxidizer and particle flux across

the front,
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where _oris the particle mass in the reaction zone and f_ is

the flux of particles into the reaction zone at time 4 .

Since gas is generated in the reaction zone at the expense

of particles_ the continuity e_uation for the gas is in essence

the derivative of Eq. (2-6)_ so thatj in accordance with Eqs. (2-7)

and (2-8)_ it is represented by the relation

The particle continuity e_uation is then obtained by sub-

tracting Eq. (2-11) from Eq. (2-10):

(2-12)

The energy eRuation for the mixture in the reaction zone

specifies that the internal energy accumulates there as the re-

sult of the influx of material across the combustion front and

flow work on the system, while it is expended in the form of

work performed by the expanding front on the compression of the

medium by the simple wave, that is

(z-z3)

where _ denotes the internal energy which includes the energy

of formation, and subscripts _or and-_X refer to particle quanti-

ties in the reaction zone and just ahead of the front p respectively.
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The mass transfer in the reaction zone from the particles

so that the gas,, and particle energy equations are

(2-14)

and

(2-1s)

Equations (2-9) through (2-15) hold for any thermodynamic

description and for a general mass generation rate. However,

accordin_ to Idealization 1, __, so that _ _, fl_,.

and _o>>_1o . while from Idealization 2, _/>= const. Conse-

quently, only the mass and energy equations for the gas phase

and the mass equation £or the particles are needed for determining

the generation of pressure waves at the combustion front. Equa-

tions (2-9), (2-11), and (2-14) become respectively:

(2-16)

while

or

X -r

(2-17)
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whe re

and

+

or

d_

where

(z-18)

U.3x --- uax,- S

is the absolute gas velocity at the instant when it is over-

taken by the reaction front.

As a consequence o£ the fact thatp as pointed out at the

outset o£ this sectionp the state o£ the products in the reaction

zone are described in terms o£ _r' T_, and _, it follows that
or

and Eqs. (2-17) and (2-18) can be written more explicitly as

£ollows :

and

(2..19)



where according to thermodynamic identities
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and

_e _cT÷ :t _j"_
DInT _ J:' ainT

while, as a consequence o£ Idealization 2, e_x = _]_r" G_e= const.

The compression process, which yields the expressions £or

_x_ _) ' _x__ ' and _t_x(_ , is accomplished, according

to Idealization 2, by the action of a simple wave which, as

stated in Idealization 4, propagates through a perfect gas with

constant speci£ic heats. Consequently:

and

t (2-21)

where _. is the velocity o£ sound in the undisturbed medium.
Lo

Its value depends on the assumption concerning the particle

motion. In this respect, as stipulated in Idealization 5,

two cases are considered: (1) where the particles do not par =

ticipate in the gas motion at all, and (II) when they £ollow

the gas motion identically.

In case (I) then:

,-----'-'---I

(2-22)
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since disturbances are propagated only through the gas.

In case (II), however, the particles are an integral part

of the mixture, so that its molar mass becomes, according to

Eq• (2-3), °_]_ ._.(/_-_) ; and

(2-23)

The quantity x6_ is the specific heat ratio of the gas phase.

The mass generation rate, the last quantity needed to com-

plete the formulation of the problem, is evaluated as follows•

The mass of particles accumulated in the reaction zone per unit

cross-section area over the total time interval from o to t is

9_(_,6x) is the fraction of particle mass still existing atwhere

time _ out of that which entered the reaction zone at time tx.

From Eq. (2-24) then:

J
mfp- dt

and Eq. (2-12) yields

= d_ '" -I- "

The quantity _(_) can be expressed in terms of concen-

trations averaged over the whole extent of the reaction zone,

• Consequently, with the use of Eq. (2-2),

(2-27)
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P

where n_xr[_,_) is the average number density of those particles

which entered the reaction zone at time /x and still exist at

time t (i.e., in our case their number at time _- divided by the

width of the reaction zone at the same time). But, as stipu-

lated by Idealization 1, their number rTfxr(_,t,_ Xr_) is invariant,

so that

whence

and

J 'H-t_-,,) 3 2 J
-. ? (.t,t,J

(2-28)

Furthermore, since according to Idealization 2 at _= _ the

particles are still intact, it follows that _ = r_.

Consequently Eq. (2-26) becomes

. = ._(t _)a-{ at_
o

(2-29)

Equation (2-29) attains an explicit form by the introduction

of an expression for the rate of particle consumption. For this

purpose, as specified in Idealization 5, the commonly accepted

rule

_1_ K

de
(2-3o)
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has been adopted. Equation (2-29) reduces then to

= --C
(2-31)

where

:-- 0

(2-32)

Finally, since in case (I) the particles remain stationary

and therefore enter the reaction zone only by being swept over

by its front:

for case (I) (2-33)

while in case (II) they maintain a constant loading fraction in

the compression wave, so that

for case (II) (2-33a)

2-1.3... Non.=.dimensional ' Formulation

As a consequence of the rule of Eq. (2-30), adopted here

for the rate of particle consumption_ the most natural standard

for the reduction of the physical dimensions of the problem is

the time constant:

K
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which, as is apparent from Eq. (2-32), expresses the double-

life time of particles in the reaction zone.

Consequently the non-dimensional time and space coordinates

are

4 ×

_-_ _-- and _ -S_io_ (2°35)

the latter being compatible with non-dimensional velocities

The thermodynamic parameters are non-dimensionalized by

referring them simply to the initial state of the undisturbed

medium, i.e.,

E -- (z-37)

Finally, the mass generation parameter and the radius are

reduced in the straightforward manner by the introduction of

Since the problem is concerned specifically with the de-

termination of the change of state in the reaction zone, its

parameters become the major dependent variables, and, as a

consequence of Idealization 2, they a_e functions of _Vonly,

while ){is relegated solely to the description of the extent
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0

of the reaction zone and is therefore also a function of _V.

Hence subscript c_c is dropped everywhere without introducing

any ambiguity, with the clear understanding that all symbols

without any subscript refer solely to the gas in the reaction

z one.

Under these circumstances Eqs. (2-19) and (2-20) become

respect ire ly :

A,JI,,p ,./I,ea_r- + B, 4'r - '
(2-39)

and

A2JI"Pao-r .-p, j I,,,e ¢-'- d "r"
(z-4o)

or:

j p

d_
(2-41)

and

-@
d't" A, B,, - A_B,

(z-4z)

Equation (2-9) gives simply

- £Tde-
(z-43)
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while from the definition of tl._^D

X
(2-44)

The coefficients in these equations are defined as follows:

(;_ln V /

(2-.4S)

A2= /_t _ -- PV(A *-s.)
k JInP] e, :'

The source terms are given by

PVB,

(z-46)

(2-47)

where

and
(z-48)

while

V _' (z-49)



2O

and

(2°50)

Furthermore, as a consequence o£ Eqs. (2-21),

@
(Z-Sl)

E1_= E_o-r _'-t _ _- (z-sz)

and

%-_I.p_- i] £or case (1) (z-ss)

or

for case (II) (2-53a)

Finally the gas generation parameter becomes, according

to Eqs. (2-31), (2-33), and (2-38),

o

£or case (I) (2-$4)
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¸"3

where _/.(t;_ I is determined by means of Eqs, (2-50) and (2-53),

and, with the use of Eq. (2-51),

..a--5_ _(_"t)dT a for case (II) (2-54a)

while, as a consequence of Eqs. (2-32), (2-34), and (2-38),

(z-ss)

-'3-

The problem is now fully defined in terms of four differ-

ential equations, Eqs. (2-41), (2-42), (2-43), and (2-44), and

one integral equation, Eq. (2-54), which describe the variation

of five dependent variables: p, C-", _ , ._ , and _. The

primary coefficients in these equations are evaluated from the

thermodynamic equilibrium equation and state data giving in

essence

V::V(P_." _) _ (_I..,=CI){_..,_) and _= F-- _'F_ 7) (2-S6)

and the rest of the coefficients are, by virtue of Eqs. (2-51),

(2-52), and (2-53), functions of _ only.

The integration is carried out subject to the following

initial conditions:
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(while, as a consequence of Eqs. (2-56), V _ _ and

and the constraint prescribed by Idealization 6:

-_ (2-58)

for specific values o£ the loading factor, _ , and the rela-

tive speed of the combustion front, _ , which, in the formalism,

became the major parameters o£ the study.

2-1.4. Steady State

For each set o£ parameters the solution approaches asymp-

totically a steady state that results from the vanishing o£ the

three derivatives expressed by Eqs. (2-41), (2-42), and (2-43)

while that o£ Eq. (2-44) becomes a constant, or, what amounts

to the same, from the fact that all source terms vanish while

_X attains its steady-state limit. On the basis of Eqs. (2-46)

(2-47), (2-49)j and (2-50), the steady state is therefore de-

fined in terms o£ the following relations:

(2-59)

- D, ^Ys : o (2-61)

where subscript G refers to the steady state. It should be

noted also that p as a consequence of Eqs. (2-56), _/shas been



25

°4

adopted as an independent variable, replacing _ , so that k_be-

came a function of _, X/, and _, and, in accordance with the

constraint of Eq. (2-58), it has been already taken into account

that _: _..

Equations (2-59) and (2-61) yield

% - i y; x ± s%.1 (2-62)

while Eqs. (2-60) and (2-61) give

- [ F t
[D_j_ j7

(2-63)

Equation (2-62) can be looked upon as representing a rela-

tionship between Vs and "_,., with Y:_ and _ as parameters.

Of these, one can be eliminated by means of Eq. (2-63) to yield

in effect expressions for lines of constant _ or of constant

"vrls in the -_-Vs plane. Moreover, as is readily evident from

Eqs. (2-62) and (2-63), the elimination of _causes the concomi-

tant elimination of _ , and, consequently, the disappearance

of any dependence upon the motion of particles in the simple

wave. Hence the relationship between the state parameters _,,

G% , and _ is independent of Idealization 3.

The steady-state gas generation term can be expressed di-

&

rectly from Eqs. (2-53) by noting that for mf,,=o , as is ap-

parent from Eq. (2-12), ,_ = . It follows then that

/44" _o_"- 7o_ _ t Lii_ ] for case (I) (2-64)
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and

for case (II) (2-64a)

The same result is obtained, as the reader may amuse him-

self verifying, from Eqs. (2-54) and (2-55) with _ = _5 = const.

and _ = const,

Combining Eqs. (2-64) with Eq. (2-61), it follows that

for case (I) (2-65)

and

= _o for case (II) (2-65a)

which pemit lines of _o- const, to be plotted in the _s-Vs

plane. Subsequentlyt by invoking Eqs. (2-56), lines of const.

_, ys . and _ _n be al_o plottod in th_ _-e_ pl_n_.
Since, as a rule, the simple wave will coalesce into a

shock wave before the steady state is attained, it is also of

interest to determine the steady-state parameters for the case

of a shock wave followed by the reaction zone. This is accom-

plished quite simply with Eqs. (2-62), (2-63), and (2-65) by

the use of normal shock relations for _(_s), E_A(_s) , and
_A

_Z[_ _._. in place of Eqs. (2-51), (2-52), and (2-53).
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2-2. Results

2- 2. I. Spe ci £i cat ions

Numerical solutions were obtained by means of the University

of California IBM 7090 computer with the use of JANAF Tables [22]

as a source of data for the thermodynamic properties of 'the con-

stituents. All the state parameters were determined for the

equilibrium composition using our own program written for P , _ ,

and Y as independent variables.

The particular mixture adopted for this purpose was liquid

hydrazine and gaseous oxygen at an initial pressure of 1 arm and

an initial temperature of 300 ° K (O o= 330 m/sec). Since it

turns out that for this mixture the mass of fuel is equal to the

mass of the oxidizer at stoichiometric proportions, the value

of y=_ corresponds to stoichiometric composition.

The value of the constant in _.q. (2-'30) is for most hydro-

carbons [23] about

- ctr_ 2

= × /0  ec.

so that the time constant defined by Eq. C2-34) is approximately

_o _- d_ rn#c rosecends

_o is the particle diameter in microns.where

The parameters of the problems used for the computation

of the transient behavior were

Z = .o# .Iv
> )

and

ID
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while for the final steady state a much wider scope of _ from

0.005 to 0.2, Y from 0.005 to 1.6 (which, according to

Eq. (2-65a), is equal to "_ in case (If)), and _ from 0.005

to 0.2 has been explored.

2-2.2. Transient Process
i , i , i

The results for the transient case are expressed with ref-

erence to the steady state in terms of the following parameters:

X K xr

=
(2-66)

where subscript S refers to steady state. The use of these

parameters enhances the correlation between the results and

leads therefore to clearer conclusions.

To describe the general character of the solution, Fig. 2-1

has been plotted for a particular set of parameters _, = 0.10

and _= 0.20 in case (II), i.e., when the particles follow the

gas motion identically. The reaction front is represented by

the thick continuous line, the thin lines describing the charac-

teristics of the simple wave. Particle paths are shown by thin

broken lines, the thick broken line delineating the end of re-

action, i.e., when the particle radius becomes equal to zero.

In accordance with Eq. (2-55), the residence time of each

particle (until it disappears) in the reaction zone is 0.5.

Since at _=O the particles are at rest, the intersect of the

line denoting the end of the reaction zone with the q'-axis is
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exactly 0.5; however, it is of interest to note that the transient

is by no means over at that time.

Figure 2-2 describes the motion of the reaction front in

the various cases investigated here. It should be noted that

the front world-lines are depicted there in the reduced time-

coordinates where X is used instead of the _of Fig. 2-1.space
t 5

To help decipher the diagrams, auxiliary curves of V_sas a

function of _ are inserted. In case (I), i.e., when the particles

are at rest, both the increase in _ and in _ enhance the ac-

celeration of the front. In case (II), however, just the oppo-

site holds true, while the acceleration is always larger than in

the previous case.

The corresponding pressure profiles are shown in Fig. 2-3.

The trends of Fig. 2-2 are reflected here in the fact that cases

of larger acceleration correspond to faster rise in pressure.

The most significant, however, is the observation that it takes

a surprisingly long time to attain steady state which, especially

in case (I), none of the profiles achieved within the time in-

terval well in excess of the double-life time of the particles.

The steady state is attained most easily for low loading factors

and low flame speeds in case (If), i.e., when the particles

follow the motion of the gas identically. In drawing conclusions

as to the absolute value of pressure, reference should be made,

in accordance with Eq. (2-66), to the steady-state values (given

in Figs. 2-5 and 2-7). One should note in this respect that a

higher value of _ does not imply a higher value of P. In

fact, as the reader may verify, higher pressures are developed
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for the same value of "_ in case (I) than in case (II), although

the opposite holds true for _% as it appears in Fig. 2-3.

Figure 2-4 demonstrates the relation between pressure and

temperature, and Fig. 2-5 that between pressure and specific

volume, over the whole range of the pressure pulse from the in-

itial conditions when _5 = _t_ = Vcs = 0 to the final steady

state when _s = e,_&----- V_ =

tegral curves of equations

,:/e o A,<_- A_@,

• They represent, in effect, in-

(2-67)

and

p
av _ A, B_- ,%B,

(2-68)

where

(2-69)

respectively. Equation (2-67) is obtained directly from Eqs.

(2-41) and (2-42), while Eq. (2-68) is derived from Eq. (2-41)

and the first term of Eq. (2-46) which, as can be verified by

reference to Eq. (2-17), expresses the derivative: cHnV
dq"

Of particular interest here is the manner in which the

steady state is approached. As it appears from Fig. 2-4, in

case (I) the temperature tends to approach the steady state

faster than pressure, producing even an overshoot for higher
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loading factors and lower front velocities. For _-0.05, the

pressure approaches the steady state earlier, and with _--0.20,

the temperature is then practically proportional to pressure.

A similar role is played by _o--0.i0 and _--0.20 in case (II),

but the temperature overshoot is not apparent there within the

scope of parameters used for our study. Figure 2-5, which in

trend agrees of course with Fig. 2-4, shows a much more signif-

icant overshoot in specific volume, especially in case (1). In

contrast to temperature, however, it occurs for both high loading

factors and high front velocities.

2-2.3. Steady State

The steady=state diagrams which, as a consequence of the

definitions of Eqs. (2-66), are necessary in order to decipher

the results from Figs. 2-2 to 2-5, are given in Figs. 2-6 and

2-7, the former in the _-V s plane, and the latter in the

_-{_s coordinates. Plotted there are lines of constant Ys

besides lines of constant _o and _ which appeared in the

transient plots. For case (II), according to Bq. (2-65a), lines

Ys and _o coincide with each other.Of const.

Finally, Fig. 2=8 gives the steady-state parameters in the

_-@s plane when compression is assumed to be accomplished by

a shock instead of the isentropic simple wave. By comparison

with Fig. 2-7 it appears that the coalescing of the simple wave

into shock has a relatively insignificant effect on the steady

state attained by the pressure pulse.
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2-3. Discussion and Conclusions

2-5.1. Salient Features of Solution

In order to bring out the essential character of the solution,

it is instructive to examine the results under the assumption that

the gas in the reaction zone behaves as a perfect gas with con-

stant specific heat and the same molecular weight as the oxidizer.

Hence, the volume ratio defined in terms of the pressure and

temperature is

%/ = _)/p (2-70)

and the energy, which applies only to lean mixtures, is

_Y__ e-I (2-71)

The quantity E_is a constant energy of formation of stoichi-

ometric products per unit mass of initial fuel particles at the

initial state, and _r is the constant specific heat ratio of

the reaction zone gases. Consequently, Eqs. (2-45) become

= B,=-i

19

while Eqs. (2-48) yield

(2-72)

F = o _ 6 = (_+y)_ (2-73)

Substitution of Eqs. (2-46), (2-47), (2-49), (2-51), (2-52),

(2-70), and (2-71) into Eqs. (2-41) and (2-42) and rearranging

gives
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and

JP _ _- +-
_',.-+ _-j

_e e-I,,,_ ,m(- +') ++"-'+°"g +]
-- (_',.-I)P-3. (z',s)

where

_()__" E/,o- E+,_ (z-76)

is now an additional parameter of the problem.

It should be noted that Eqs. (2-43), (2-44), (2-54), and

(2-74) do not contain any dependence on O, and hence the

pressure puise may be solved independently of O.

At the initiai condition _¢=_ and P= O = _:I , and

( i ' +""'+"+-a__P : C'_-,)(_..o..4-_,_, x
d1" 5"--0 "q"-"+

(2-77)

while

fje)kE+--:,,r:°:(''`''-_)_
I;_;t _Y (z-78)

For small values of _, Eq. (2-54) can be represented approxi-

mately for both case (I) and case (II) as

i,,,/-_ 37oS_ (2-79)



while X takes the form

X=S_ (2-80}
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which implies that the gas velocity is zero and that the particle

size has not changed in the reaction zone. Hence j q--_o

and Eqs. (2-77) and (2-78) become

dP
=3 (Z-8l)

and

- __ (__,)__ (z-8z)

respectively. Note that at time zero, Eq. (2-49) is

JY
ci,:r"

(2-83)

For the hydrazlne fuel and oxygen gas considered in the

analysisD-(_ 200 while _1.4. Hence, Eq. (2-81) is

NP

The discrepancy between values obtained from this expression

and those from Figs. 2-5 and 2-7 arises primarily from the

fact that V was not considered to be a function of Y in Eq.

(2-66).

The steady-state solutions for a set of parameters are

obtained by equating Eqs. (2-74) and (Z-75) to zero with Eq.

(2-61). Therefore,

I
(z-as)
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and

(2-86]

With the help of Eq. (2-61),/_ , S , and O3X may be eliminated

from Eqs. (2-85) and (2-86) to yield a relation between the

steady-state properties for a giveni_ :

(2-87]

and hence

The solutions displayed in Figs. 2-7 and 2-8 indicate that

the relationship between_ and e is essentially independent of

P. Hence the last term in the bracket of Eq. (2-87) dominates

the firs t.

As in Fig. 2-6, Eq. (2-88) illustrates that for given

values ofy_ and._ the solutions for _ and Vs lie approximately

on a hyperbola.

2-3.2. Conclusions
i i l

As to overall conclusions, one may note the following

consequences of our theory.

Most of the curves describing the transient process in

Fig. 2-2 (especially for case (I)) are grouped together,
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_2
_o

principally as a result of using _o =-K- as reference time.

It can be concluded, therefore, that the development of the

transient process with time is governed essentially by the

life time of particles which, in turn, depends only on the

mean particle size and the reaction rate constant. As demon-

strated in Figs. 2-4 and 2-5, the progress of the transient

process on the thermodynamic plane depends, however, on the

initial composition and on the relative velocity of the com-

bustion front.

From Figs. 2-6 and 2-7, it appears that curves of constant

are almost the same, independently of whether they refer to

case (I) or case (II), while, as demonstrated from Eqs. (2-62)

and (2-63), curves of cons,. _s are identical. It follows

therefore that, for the determination of the finally attained

steady state, particle motion in the simple wave can be completely

disregarded, provided that composition of the gas in the reaction

zone, rather than the initial loading factor, is specified. At

the same time, as far as this state is concerned, it is practi-

cally inaterial whether the compression process has been carried

out by the simple wave on one side, or by a shock wave on the

other side_ of the whole spectrum of possible wave compression

processes.



3. INFLUENCE OF PARTICLE MOTION

The need for more careful consideration of particle motion

during the combustion initiation process is manifested by the

wide variance in pressures obtained with case (I) and case (II)

in the previous section. Consequently, the effects of such

motion are here analyzed on the basis of a realistic drag law

which requires the particle velocity in the unreacted region to

depend not only on the gas velocity, but also on its acceleration.

The flux of fuel into the reaction zone is a function of the

velocity field. Hence, the feedback system, consisting of the

reaction zone and the pressure fan, will be less stable, empha-

sizing the importance of the link between the chemico-kinetics

and the gas dynamics of the problem.

Several important aspects of the solutions that will be

obtained with real particle motion can be deduced immediately.

The particle acceleration is zero at the start since it is gener-

ated by the flow field. The initial stage of the process is

des.cribedj there£ore t by case (1)_ while the motion of case (If)

is approached at the final steady state because by de£inition

there can be no velocity lag at the reaction iron,. Hence_ con-

ditions at the beginning and end o£ the transient are known £rom

the results o£ case (1) and case (If) respectivelyp and the

purpose o£ this section is to study the transition process.

Rudinger and Chang [5] presented the complete characteristic

method o£ analysis £or non-steady gas-particle mixture dynamicsp

together with several examples. Instead o£ applying their
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sophisticated technique to this problem, it was decided to make

several assumptions which render the problem more easily tenable

and still permit the salient features of the phenomena to be

determined.

3-1. Analysis

3-i.I. Particle Acceleration
i |. i i i i i i i

Although the region ahead of the combustion front really

consists of a complex wave region, it is assumed here that the

flow field of the gas phase is described by the equilibrium

simple wave of case (I}, while the fuel particles again abide

by Idealization 2 of section 2. The velocity field of the par-

ticles, on the other hand, is obtained by integrating the ex-

pression for the acceleration [S]:

where L( and Up are the gas and particle velocity, _p is a
D

particle trajectory,-- is the substantial derivative in
D_

space, and C D is the drag coefficient.

_-X

The non-dimensional form

of _q. {3-I}, consistent with the previous definitions of dimen-

sionless time, space, velocity and density, is

C3-2}

_'_'_ _/(_o%_ The expression used for the drag coefficient, ('D,
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is that proposed by Gilbert, Davis, and Altman [24]:

Co = ?__8.Re _- . '-/8 (3-3)

where the Reynolds number, Re , is defined by

_ 2 = 2. lu-u.ri
Re = :x A (s-4)

In addition to Eq. (3-3), constant values of (/D were used

to test the sensitivity of the solutions to the value of the

drag coefficient.

5-1.2. Mass Gene.r_at.ion Rate

Modifications to the analysis presented in the previous

section due to the consideration of real particle motion occur

only in the expression for the mass generation rate in the re-

action zonep/4_ . Specifically, the expression for the flux of

particles into the reaction zone at time _X , mf_ is needed.

The general expression for this quantity, which applies here as

well as to case (I) and case (II), is

(3-s)

where _f_ and _x are the particle concentration and velocity

just ahead of the reaction front at time _x • The quantity

_t_x is obtained from Eq. (5-I), while the ratio _fo_ is evalu-

ated by integrating the negative of the divergence of the dis-

tance between two particle paths which pass on each side of the

reaction front coordinates, _ X) . Substitution of Eq. (5-5)
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into Eq.

which, in non-dimensional form, is

q_

-
0

(2-26) yields the expression for the mass release rate,

(3-6)

3-I.3. Simple Wave Flow Field

The simple waves in the unreacted region will in general

coalesce [25], which leads to triple-valued solutions for the

gas velocity in the _, X> plane. Since the particle velocity

field depends directly on that of the gas, only single-valued

solutions can be permitted. However, the shock wave would

propagate approximately at the front of the cusp formed by the

coalescence of the simple waves, so it was logical to use the

solution corresponding to the largest value of t_(_)X) at those

points (_jX) where the flow field was triple-valued. With

this modification, the flow field of the particles can be com-

puted in a straightforward manner.

The problem is now determined by the four differential

equations from the previous section, Eqs. (2-56) through (2-59)

and the integral equation, Eq. (5-6), which now replaces _q. (2-49).

The equations are subject to the same set of initial conditions

and the various coefficients defined by Eq. (2-40) remain un-

changed since they are state properties. The integration is then

carried out subject to Vq. (2-51) for selected values of the

loading factor, _o , and the flame speed, _.
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Before proceeding further, it is of interest to examine

Eq. (3-2) more carefully. For a___=O , which corresponds to
K

a zero transient period, the acceleration is zero for all

since for any finite _F" , _ is zero, and hence the solution is

given by case (I). However, for _>O , the transient period

will be greater than zero and the process will depend on the

values of _ Fo

equal to zero.

and _ . Therefore, the solutions for

are different than when _ is set
K

3-2. Results

3-2.1. Speci£ications

In addition to _o , the loading factor, and _ , the flame

speed, _ F_ and
K ' _ , f are parameters of the problem because

they appear in the expressions for the particle acceleration and

drag coefficient, Eqs. (3-2) and (3-3) respectively.

taken for _o, _ , _f, and _ in this problem are

The values

K = •oo2s'-,,,.,%,,( G-,,a,,,,,'er_=-3-]")

while
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so that

and

The resuIts were obtained for

i32ooo

2
cm - $ec

qq,2o

since for this dilute

case, the simple wave assumption for the gas phase in the un-

reacted region should be a good approximation.

3-2.2. Solutions

Figure 3-1 displays the solution in the q--_ plane for

---._ , and ro=2[ microns, and makes clear the assumptions

regarding the simple wave flow field in the region of coalescence.

The velocity lag of the particles is evident, and the effect of

increased gas velocity on the particle acceleration may be ob-

served by comparison of the two particle trajectories shown there.

The corresponding P-_ solution in Fig. 3-2 manifests the

occurrence of a pressure overshoot during the transition from

case (I) to case (II). This is due solely to the relationship

between the gas-particle dynamics and the chemico-kinetics of

the model without the consideration of any extraneous effects

such as wave interactions and tube geometry. In addition, the

solutions in Fig. 3-2 for constant CDindicate that the over-

shoot will occur independently of the law assumed for the drag

c oe ffic lent.

Figures 3-3, 3-4, and 3-5 give the acceleration, drag co-

efficient, and Reynolds number at the reaction front during the

transient process and show that the particle is accelerated in

essentially one unit of time, _ .
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Q

Figure 3-6 illustrates the dependence of the solution on r o

where the other parametric values are the same as in Figs. 3-1

through 3-5. Although the pressure peaks occur at about the

same value of _ for the three particle sizes s this is not true

in the dimensional time scale since t =_. The solutions in

Fig. 3=7 are for the same conditions as those of Fig. 3-6 except

that _,_; but nowj as a consequence of assuming _ to be con-

stantp the absolute reaction front velocity becomes less than

the particle velocity at the front when _ _._ for _o-- _

microns , ,asshown in Fig. 3-8. The point where Ulo=_VAis depicted

by the (-_)in Figs. 3-7 and 3=8. Although the solution in

Fig. 3-7 for To _ _# microns is not physically tenable beyond

_ _._ p the results indicate the influence of _ on the tran-

sient process. The pressure asymptotes are smaller than in

Fig. 3-6 m from the results of section 2p but the pressure over-

shoots are more pronounced than before for corresponding particle

sizes. This reflects the fact that the velocity with which the

flame overtakes the particles obtains a lower minimum in the tran-

sient for _=._ than for _= ,_ and thus yields a more sudden

pressure decrease.

3-2.3....Time Lag Law

Since the particle motion was characterized by a velocity

lag relative to the gas phase, the transient process was ana-

lyzed for the following particle flow field:
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so that

where the quantities P and U are functions of q_ and _ is

the unreacted region. To perform the integration D the values

ff_for
and U?A must be substituted into Eq. (3-6). Since for

each point (_)of the unreacted region there exists a point on

the reaction front such that the simple wave emanating from that

point passes through _-_X), these may be expressed in terms of

properties at the reaction front at a time _ with the aid of

the simple wave relations.

The pressure pro£iles for this case, which are now inde-
w

pendent of _ _ and
K ' _ , _f , are presented in Fig. 3-9

over a range of _£or _o=.# and S=._ . By comparison of

Figs. 5-6 and 5-9, it is evident that the results for a given

set o£ _ --_ and be represented adequately by
K ' _ , f_can

the solution for a selected c_a_,

3-3. Conclusions

While the propagation velocity in homogeneous flames depends

primarily on the state properties and transport coefficients, in
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two-phase combustion it depends, in addition, on the relative

velocity of the gas and particles. For the flame model assumed

here, if the quantity _ is too small the particle velocity lag

may cause the absolute velocity of the front to become smaller

than the local particle velocity during the deceleration period.

Consequently, to make the solutions reasonable during the decel-

eration process, _may have to be chosen so large that, based

on experimental and theoretical evidence_ it will be unreasonable

during the acceleration process. It should be noted that _=._

corresponds to 60 m/see for this problem (_to= 330 m/see; oxygen,

300 ° K), which is already an order of magnitude higher than the

values predicted by Williams [8] based on eigenvalue solutions.

The most significant aspect of this study is the occurrence

of the pressure overshoot in. the reaction zone, indicating the

strong coupling between the thermo-kinetic and gas dynamic proc-

esses in two-phase combustion. Since the overshoot is of the

same order of magnitude as the asymptotic pressure, and its peak

attained in about a millisecond_ the results suggest a mechanism

for the source of the pressure disturbances in liquid rocket

thrust chambers which often amplify to destructive proportions.
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4. WAVE POLARS FOR NON-REACTING TWO-PHASE SYSTEMS

In accordance with Idealization 2, heat and mass transfer

between phases in the unreacted region were neglected in the

analysis of pressure wave generation. The study of the modifi-

cations on shock and isentropic processes introduced by the con-

sideration of transport phenomena is therefore of interest. The

advent of rocket propulsion technology has already promoted a

substantial amount of work in two-phase dynamics [1-7]; however,

the problem of shock and rarefaction wave propagation in evapo-

rating two-phase systems has not been treated.

The purpose of this section is to consider the changes of

state brought about by the action of shock and rarefaction waves

propagating through two-phase mixtures. While the results ob-

tained for the jump conditions across steady-state shock waves are

correct regardless of the relaxation phenomena, those for isen-

tropic rarefactions and compressions are essentially approximations

since, strictly speaking, the assumption of isentropicity excludes

the existence of particle velocity lag throughout the process.

The solutions are presented in the form of wave polars similar

to those introduced by Oppenheim, Urtiew, and Laderman [26] for

the analysis of wave interaction phenomena.

4-1. The Particle-laden Gas

4-1.1. Equilibrium Sound Velocit Z

The general form of the expression for the equilibrium sound

velocity is [27]
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CXe%= J I. _,

a In? (C./Je_"V \_ InT/

where ? is the density and(cf)esthe constant pressure specific

heat per unit mass of mixture, and the subscript e% denotes the

equilibrium condition. Equation (4-1) and the equation of state

enable one to obtain the equilibrium sound velocity.

The equation of state for a gas containing solid particles

can be expressed in terms of the volumetric fractions,

the densities, pl , of the particles and gas, so that
#-

_z" , and

(4-2)

where 0_ is the mass loading factor, and the subscripts

fn , _ , and 1o refer to mixture, gas, and particle quantities

respectively. While significant effects of finite particle vol-

ume on the dynamics of gas-particle systems were illustrated by

Rudinger [7], his results show that the assumption " _0 is

valid over an important range of application and hence this ideal-

ization is invoked here. Consequently, Fq. (4-2), the perfect

gas law, and the definition of the mass loading factor yields

where _ is the molecular weight of the gas and

versal gas constant.

(C_le _ is obtained from theThe specific heat ratio, C_ '

specific heat equation
2

(cr).i - (c+),l _-_t lInTs/t$I_}) (4-4)

is the uni-
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and from Eq° (4-3)

Combining Eqs. (4-3) and (4-S) and rearranging yields

where _ is the specific heat ratio of the gas phase, and _)is

defined by

(c_)_ (4-7)

Substituting Eq. (4-3) into Eq. (4-I) gives

(4-8)

or

II_S_ _/)I_e__=_ ,1__//(i.t - (4-9)

Hence the equilibrium sound velocity of the mixture is

always less than that of the gas phase, so that the presence of

the particles has the effect of slowing down the wave, the same

effect as occurs when a gas of higher molecular weight is added

to a gas of lower molecular weight. Of course, in this case

the heavy gas contributes to the pressure, unlike the particle-

laden gas,
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4-1.2. The One-dimensional Shock Process

The counterpart of the ideal gas shock relations is ob-

tained for the particle-laden gas from the equation of state,

Eq. (4-2), and the well-known Hugoniot equation

h,-ho= _(_,-_Xv,_Vo)

where h is the enthalpy per unit mass of mixture, V

mass specific volume of the mixture, and the subscripts

1 refer to the initial and final states respectively.

non-dimensional form of Eqs. (4-3) and (4-10) are

pv = e

(4-10)

is the

o and

The

(4-ii)

and

- ,,7o- £ (4-12)

in which

h
C?V)o •

and (4-12) gives

"_l _= V, _ ,and
P is the ratio _-o ' V_ ' _- To

Eliminating _ dependence from Eqs. (4-ii)

The shock Mach number, Mo , normalized with respect to the

gas phase sound velocity in the initial state and obtained from

the momentum equation is

uo (P-I)/(,- V)
MO --
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where

Substitution of Eq. (4-13) into Eq. (4-14) leads to

Mo = L a"t(i+_'_)(_-_)/

_(o is the initial velocity relative to the shock wave.

(4-15)

The velocity change across the shock wave p

to be

U _ is easily seen

U-- Mo(1-v)

and with Eq. (4-15)

U - (r-u[/_,.,.j, aYs_)P+__] (4-17)

If the shock velocity is supersonic m tvlo_ t the shock

will consist of a shock front £ollowed by a relaxation zone.

Howeverp when p satisfies

(4-18)

and hence the values of No are

M o _ _. (4-19)

the shock velocity is less than the gas sonic velocity in the

undisturbed region. As a result of A_o_ _ j the shock wave

will be fully diffused and the gas and particle properties will

vary continuously through the s_ock wave. Similar phenomena

occur in reacting gas flows [6],
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The Math number_ M , and velocity change, U , normalized

with respect to the equilibrium sound velocity of the initial

mixture are obtained by dividing Eqs. (4-15) and (4-17) by Eq. (4-9):

¢2

? _(-"_ _',_) (4-20)

-_
• _z_$_)p_- _- (4-21)

Hence, as p-_ _ , _e-_ _, so that the wave velocity for vanish-

ingly small pressure ratios is the equilibrium sound velocity.

4=1.3. The One-dimensional Isentropic Process
I I i ; i • i - • i

The particle-laden gas isentropic relations are obtained

with the aid of the equation of state, Eq. (4-2), and the isen-

tropic condit ion

--"- _)InT (4.-22)

./

the aid of the definitions of _, _, _',Combining these with

and the non-dimensional variables, there results in integrated

form:

e p l+s )
-_ (4-23)

and hence

p (4-24)
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The change in particle velocity across the isentropic expansion

or compression is given by the invariant relation

f

f;
(4-25)

and with the help of Eqs. (4-22) and (4-23),

U
2 FirYS_,. _ "_

y-l L 7¥_ u.,_

4-2. The Gas-Liquid-Vapor System

The system consists of an ideal gas component with constant

specific heat and a condensed component with a finite vapor

pressure. It is assumed that the vapor behaves as an ideal gas

and that both phases of this component have constant specific

heats. The volumetric fraction of the condensed phase is again

considered to be negligible.

4-2.1.. Equilibrium ' Thermodynamics

The equilibrium composition of this system is determined

by the thermodynamics of the condensed component in terms of

the independent variables_ _o and -I-. Since for equilibrium the

Gibbs free energy t _ _ of the two phases must be equal p

, 7° .f_

where subscripts c and v denote the condensed and vapor phase t

and the superscript _¢refers to quantities at the initial
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pressure. _ . Since Vc_ O . and the vapor obeys the ideal

gas law. Eq. (4=26) becomes

_*c_(T_- _v*(T) t 7//---_]_(-_--KV)oJ (4-28)

where _ is the mole fraction based on one mole of gas component

plus vapor and 7;?v is the molecular weight of the component in

condensed phase. Hence D

_ (-pm)o

The quantity . a function of the temperature alone, canT/ v
be expressed in terms of its value at the initial temperature.

the constant properties of the component_ P. and _t so that

where O_ is the molecular weight ratio of condensed to gaseous

component. _ is the constant pressure mass specific heat of the

condensed component divided by that of the gaseous component,

and __v is tho non-dimensional heat of evaporation at the

-
initial state, mv =-"_.T/_7_v/o"

The initial ratio of mass in the condensed phase to that

in the gas-vapor material is

(4-31)
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while the mass of the component in the condensed phase divided

by the gas component mass, an invariant, is

or

7

i

(4-3z)

It is not possible to determine a priori whether or not _c

will be positive from Eq. (4-31)_ but rather it must be found a

posteriori. In the event Eq. (4-31) yields a negative quantity,

_c is to be set equal to zero and

Z v / -]- _0. _ (4-33)

The molecular weight of the mixture, "_m' also an invariant, is

where _ is the molecular weight of the gaseous component. The

equation of state, given by Eqo (4-2), is most conveniently ex-

pressed as

_'_ /(i _- _) (4"35)

or in terms of non-dimensional variables

(4-36)
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Di££erentiating Eq. (4-30), there results

and

The

;)Inky

,_lnZv

J/he

£rom Eqs.

_lne

_]nZv
•--'- 0 _c =0

0 I_ "P

C4-30) and C4-34),

_.,, o_l nz ,,,
J.-t

I-F--v Jlne

; ln V Zv ,:11,__ v
OInP " -I + I-Z,, ;I,_P

non-dimensional enthalpy is

(4-37)

(4-38)

and the non-dimensional £rozen speci£ic heat is

te,,/'r)o= _ l-Z +(,-(k_,,+c_,: O+z,,) (4-40)

while the non-dimensional equilibrium speci£ic heat is
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It is interesting to note that since the derivatives of the

mole fractions defined by Eq. (4-37) are discontinuous at points

where _c becomes zero, the derivatives of V and _ , defined by

Eqs. (4-36) and (4-41), respectively, are also discontinuous

the re.

The thermodynamic state of the system is now determined in

terms of the independent variables P and E) , and the six param-

eters, '_c. _v , _ , _Vt,, _]v and O"".

4-2.2. The One-dimensional Shock Process

The thermodynamic state data, the Hugoniot equation, F.q. (4=ii),

together with a value of the shock strength parameter, the pres=

sure ratio, P , determine conditions at the end points of the

wave. However, it is not possible to obtain explicit solutions for

these equations and consequently they have been solved numerically

with the aid of the Newton-Raphson technique on an IBM 1620 digital

computer. Once the state properties on the Hugoniot curve are

determined for a given value of the pressure ratio, P, the shock

Mach number and velocity change across the wave may be determined

similarly to F.qs. (4-14)and (4-16). It should be noted that the

solutions obtained here are independent of the initial state.

4-3, Results

4-3.i. The Particle-laden Gas

Figure 4-1 shows the in£1uence o£ _ and _ on the P-U shock

polar for the particle-laden gas for _=_y. The polars are sub-

stantially modified by the loading factor _ , while the ratio

of heat capacities, S , is of secondary importance. In the



55

A=eplane solution displayed in Fig. 4-2, however, where

the influence of both _ and _ is significant. Consequently,

wave interaction processes will be substantially modified by

due to its influence on the sound velocity behind the wave.

The effects of _ and _ on rarefactions are similar to those on

shock waves as shown in Figs. 4-5 and 4-4. The purpose of the

"windows" in Figs. 4-1 and 4-3 is to permit the construction of

the polars for any given _ and _ where o_<_( _ and O.< _<. 2 .

Figure 4-5 is a schematic representation of a problem worked

out by Rudinger and Chang [5] which involved the formation of a

shock wave in a gas-particle mixture by an impulsively accelerated

piston. The values of /, 7 ' and _ for their problem were .5,

1.125, and 1.4, respectively, and the problem was determined by

setting the initial Mach number to 1.50. With the aid of the

shock polars, the end points of this problem can be found immedi-

ately as shown in Fig. 4-6. The P-[J polars and _-_4 curves for

the ideal gas phase and for the mixture are given in Fig. 4-6, and

conditions at _ , _ , and _ refer to the state properties of

the gas at time zero, of the relaxed mixture at the steady state,

and of the gas behind the shock front at the steady state, re-

spectively. Points on line _ in Fig. 4-6 are determined by the

= /.9 which in turn gives the piston velocity, Up%%TOW ,data, M,

since the gas and piston must initially move together. Line

is then fixed by UI:,ISTON and knowing the value of the steady-

state Math number, _ 5Hoc_ ' the conditions behind the steady-

state gas shock, line _, can be determined. The numbers in-

cluded in Fig. 4-6 are those reported by Rudinger and Chang [5]
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and agree within graphical error of the polar solutions. Once

the pressures at the different points are known, the A-U polars

will give the corresponding temperatures and densities.

Several interesting points may be deduced from Fig. 4-6.

(i) The gas velocity behind the shock decreases from .44

at time zero to .20 at the steady state and the shock Mach number

decreases from 1.30 to 1.12, which gives the shock front the

curvature displayed in Fig. 4-6. Consequently, both the part i,-

cles and the gas will be accelerated in the relaxation zone,

even at the steady state.

(2) The steady-state velocity of the gas behind the shock

front and relative to the wave is M%_oc_- 0&HocK__D _AS----'._2,

while the velocity of the relaxed mixture relative to the wave

is _&NocK--_PISTON = "_" Hence, both the particles and the

_as decelerate relative to the steady-state wave in the relax-

ation zone.

(3) The pressure increases through the relaxation zone.

Note that if M$_ocK< _, it is not possible for a discon-

tinuous shock front to exist so the gas and particle velocity

will vary continuously through the wave.

Whereas M I was used to determine the problem here, the

polars permit several possible points of departure for solving

the p_oblem, such as _p_To.' Ms.ocK. _ ' _ ' etc.

4-3.2. The Gas-Liquid-Vapor System

The solutions of the gas-liquid-vapor systems showed that

the Math number and velocity change across a shock wave were

affected very little by the occurrence of evaporation if the
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Tab le 4-I. Velocity Change, , for P=/Oand _-- ].

The gas-particle solutions for a _ of ..I_ and

2 are 1.93 and /.96 respectively.

a v

10

20

(Zv)o=O.O15

1 1.93

(Zv)o=0.500

#y_ v=1 _,_'v= 2

2 1.93

1 1.96
2

2 1.96

1 1.96
1

2 1.96

1 1.97
2

2 1.97

1.96

1.96

1.98

1.98

1.97

1.96

1.98

1.98

1.93

1.95

1.96

1.98

1.97

1.97

1.98

1.98

1.95

1.98

2.00

203

1.97

1.99

1.98

1.99
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Table 4-2.
Mach Number, _V_ , for P=lOand _=I •

particle solutions for a _ of I and

2.3q and 230 respectively.

The gas-

2 are

m v

10

20

1

2

1

2

1 2.34

2 2.34

1 2.30

2 2.30

1 2.30

2 2.30

1 2.30

2 2.29

2.30

2.30

2.27

2.28

2.29

2.29

2.27

2.28

(Zv) o =0.500

2.34

2.31

2.30

2.26

2.29

2.28

2.28

2.27

2.32

2.28

2.26

2.22

2.28

2.28

2.28

2.26
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Table 4-3. Sound Velocity of

and _=i. The

of I and _ are

Gas Phase A- ¢x_ for P= Io

gas-particle solutions for a _;

].3Z and I.gg respectively.

m V

10

20

gV

1

2

1

2

(Zv)o-O.O 5

1 1.29

2 1.23

1 1.21

2 1.19

1 1.14

2 105

1 1.11

2 1.04

1.22

1.21

1.14

1.14

1.13

1.07

1.10

1.07

(Zv)o =0.500

1.15

1.12

1.14

1.15

1.07

1.04

1.06

1.04

1.16

1.17

1.15

1.25

1.07

1.04

1.06

106
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correct specific heat ratio of the gas and vapor is accounted

for in non-dimensionalizing the velocities_ although the tem-

peratures t densities t and mass loading factor were substantially

changed. Hencej the solutions for O and _/_ defined by

),,

are given in Tables 4-1 and 4-2 respectively for the specific

heat ratio o£ the gas component equal to 1.4p _= /, _ and P-----/O

for two representative values each o£ _v _ _c _ HvJ Z vo

and O_. The difference in values between _ and _ in Tables 4-2

and 4-2 and those for the gas-particle system are less than 0,06

and 0.07 respectively.

Table 4=5 gives the values o£ A--o-_o for the same con-

ditions as in Tables 4-i and 4-2 and indicates the significant

influence of evaporation on the solution for A. Hence the effect

o£ evaporation is an important consideration in the analysis of

wave interaction problems.

From Tables 4-i and 4-2_ it can be concluded that the in=

£1uence of evaporation on the solution to the problem of Rudinger

and Chang [5]j Fig. 4-6_ is negligible if [J and Mare used in

place o£ U and _. For example D U PISTON is .442 in Fig. 4-6

whence "_p,svoM is .526_ and_ for the extreme case in Table 4-1p

for the case with evaporation is the same as that shown in Fig. 4-6

to at least two decimal places.

4-4. Conclusions

The relationship between the pressure and the velocity

change across wave processes is essentially dependent on the
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mass loading ratio of the initial mixture s as well as the Mach

number, independently of the occurrence of evaporation and heat

transfer to the condensed phase of the mixture.

However, the temperature and density behind the wave are

dependent on these processes. This implies, then, that the

development of heterogeneous combustion will be affected by

these phenomena, since it depends on the density of the oxidizer

and fuel vapor that crosses the reaction front. In cases where

the vapor pressure is low, however, the process will still be

essentially independent of evaporation.
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5. CONCLUDING REMARKS

The generation of the flow field in a particle-fueled com-

bustion system is accompanied by:

(1) rapid development of large pressures which are strongly

dependent upon the loading factor, flame speed, and particle

motion, and

(2) significant overshoots relative to the final steady

state which occur in the transient process.

Both of these points demonstrate the importance of the link

between chemico-kinetic and gas-dynamic processes in two-phase

combustion. Several facets of the problem which should be

studied in order to understand more fully and control the process

are here discussed.

(a) Mass Generation

Consideration of the fuel vapor in the unreacted region has

been neglected in the analysis of pressure wave generation. This

is a good approximation for fuels with a low vapor pressure, such

as hydrazine, and the transport phenomena will not influence the

process significantly. However, for fuels with a high vapor

pressure, evaporation in the compression region will be important

since then the vapor will react immediately upon entering the

reaction zone, which will severely modify the transient develop-

ment as well as the steady-state solution.

The mass generation law used in this study, Eq. (2-30), has

been found to be quite valid for the burning of single drops
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in a stagnant atmosphere [23]. In this problem, however, there

is a gas velocity relative to the particles, and the state

properties of the ambient atmosphere change significantly. Hence

the effect of a more sophisticated mass release rate in the re-

action zone should be investigated, so that its dependence on the

vapor pressure, drop size, the pressure and temperature of the

gas, and the various non-dimensional parameters which characterize

the problem would be taken into account.

(b) Particle Size Distribution

The particles were characterized by a single size in the

analysis. Consequently, all particles were accelerated uniformly

in the compression region and reacted uniformly in the reaction

zone. If there is a size distribution, a separation will occur

in the compression fan according to particle sized since small

particles are accelerated more readily than large ones. In addi-

tion, the mass release rate will be modified due to the size

distribution.

(c) Particle Shattering

It is well known [18p 28] that particle shattering (and/or

"exploding") drastically modifies gas-particle dynamics so that

this will in turn have a profound influence on the development

process.

(d) Flame Model

A constant pressure flame which propagates with a constant

velocity relative to the gas phase was assumed in the analysis.
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The more "explosive" flames will be accompanied by a sig-

nificant pressure drop, however, so that evenhigher pressures

will be obtained ahead of the reaction front. This, together

with the mechanics of non-steady two-phase flame propagation,

should be accounted for in the analysis.

(e) The Chemical System

Hydrazine was used in the analysis because of its low

vapor pressure and representative energy of combustion. Differ-

ent fuels should be analyzed to determine the effect of heating

values, equilibrium chemistry, and mole number amplification.

More important, it may be possible to alter the combustion

kinetics and particle shattering by chemical additives, and

hence lead to a more controllable process.

(f) Characteristic Analysis

Once the important features of non-steady two-phase com-

bustion are properly understood by means of the studies outlined

above t the problem should be treated more in detail by the use

of the method of characteristics. The differences will perhaps

be most pronounced in the pressure overshoot phenomena since

the properties in the reaction will no longer be constrained to

spatial uniformity, but rather they will be permitted to vary

in the reaction zone, yielding more "freedom" to the overshoot.

{g) Multidimensional Effects

The transient acceleration process in the analysis that

has been presented is due entirely to the extended reaction zone
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of the particle flame. In homogeneous flames, howeverj the flame

acceleration is caused predominantly by the growth of the com-

bustion front which results in the increase of the rate of energy

release. Hence these effects should be investigated in hetero-

geneous combustion, and compared with the influence of the ex-

tended reaction zone on the flame acceleration.

(h) Wave Interaction Processes

A thorough understanding of the effects resulting from the

interaction of flames and pressure waves in non-steady two-phase

media is important for deciphering combustion phenomena in liquid

rocket thrust chambers. With the aid of the work outlined above,

a variety of these interaction problems can now be attacked from

a very basic standpoint, which should lead to a more complete

grasp of the principles involved.
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